Detecting cadmium contamination in loessal soils using near-infrared spectroscopy in the Xiaoqinling gold area
Min Yang,
Youning Xu,
Haixing Shang,
Abdullah Abdullah and
Wen Zhang
Energy & Environment, 2022, vol. 33, issue 5, 952-974
Abstract:
Loess is an important soil type that is widespread in the Loess Plateau of northwest China. However, mining exploitation, beneficiation, and metallurgy have led to inorganic contamination of soils that threatens the health of residents. The regular absorption peak shift of near-infrared (NIR) spectra in loessal soils represents a new method of soil environmental assessment based on field reflectance spectroscopy and hyperspectral remote sensing. Specifically, the NIR features of loessal soil will shift in response to changes in the soil composition and microstructure induced by heavy metal pollution. This study collected 27 samples from notable regions in the study area. Mid-infrared (MIR) spectral analysis, NIR spectral analysis, modified seven-step Tessier sequential extraction, and X-ray diffraction were used to analyze the band shift phenomenon of MIR and NIR features. The alignment of NIR bands was determined via the correlation between NIR and MIR bands associated with the vibration variations of the hydroxyl group. The correlations established by NIR band positions and exchangeable Cd cations were also analyzed. The results were then discussed according to the mineralogical characteristics of the heavy metal cations adsorbed on the surface and interlayer sites of clay minerals. These results can be used as a reference for the application of NIR technology to detecting heavy metal contamination in the soil of mining regions.
Keywords: Heavy metal contamination; near-infrared spectroscopy; loessal soil; sequential extraction; mining area (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X211030114 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:33:y:2022:i:5:p:952-974
DOI: 10.1177/0958305X211030114
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().