Process optimization for the production of biodiesel from Azolla Microphylla oil and its fuel characterization
T.R. Kannan,
S. Sheeju Selva Roji and
A. Agnes
Energy & Environment, 2023, vol. 34, issue 1, 193-211
Abstract:
The most competent and operative use of renewable feedstock is super critical for the production of biodiesel which has increased attention worldwide pertaining to aquatic fern Azolla. Maximizing the biodiesel yield by optimizing the process parameters of the low-frequency ultrasonic energy-assisted transesterification process of Azolla oil is the need of the hour for minimizing the production cost of biodiesel. Response Surface Methodology (RSM) was applied using central composite rotatable design (CCRD) to find the best optimum reaction parameters for this transesterification process. The optimized reaction parameters arrived from the design of experiments were as following: methanol/Azolla oils molar ratio (A)  =  6.49 mole/mole, KOH catalyst concentration (B)  =  1.69 (weight% of oil), reactiion time (C)  =  34.74 min and reaction temperature (D)  =  38.87°C. The best higher theoretical predicted Azolla Fatty Acid Methyl Ester (FAME) yield was Y  =  99.76% which is in well coincidence with the actual yield. The extracted Azolla biodiesel was tested for various fuel properties with standard test procedures and found to be in agreement with various Biodiesel standards and the results are promising in terms of utilizing Azolla oil as an inexhaustible and potentially economical source of biodiesel.
Keywords: Ultrasonic Energy; Biodiesel; Transesterification; Azolla oil; Response Surface Methodology (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X211065423 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:34:y:2023:i:1:p:193-211
DOI: 10.1177/0958305X211065423
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().