Energy and exergy analysis of the transient performance of a qanat-source heat pump using TRNSYS-MATLAB co-simulator
Maryam Karami and
Hajar Abdshahi
Energy & Environment, 2023, vol. 34, issue 3, 560-585
Abstract:
In this study, the transient performance of a qanat source heat pump is investigated using a TRNSYS-MATLAB co-simulator. The water/ethylene glycol-to-air compression heat pump and the helical coil heat exchanger, which is used to inject heat to or to extract heat from the qanat water, are mathematically modeled in matrix laboratory (MATLAB), and then, coupled to transient systems simulation (TRNSYS) model to evaluate the system transient performance and calculate the heating and cooling loads of the case study building. Comparison of the performance of the qanat source heat pump with an air source heat pump showed that the coefficient of performance of the qanat source heat pump is at least 5% and at most 34% higher than that of the air source heat pump. By increasing the flow rate of the working fluid in the helical coil heat exchanger from 2 L/min to 8 L/min, the coefficient of performance of the qanat source heat pump increases at least 12% and at most 34.1%. The maximum increase in energy efficiency ratio and free energy ratio of the system by the similar increase in the flow rate is 46.4% and 24.8%, respectively. The exergy analysis of the qanat source heat pump reveals that the minimum and maximum exergy efficiency of the system is 32% and 85.5%, respectively. The findings also indicate that the most exergy destruction occurs in the condenser in heating mode and in the evaporator in cooling mode.
Keywords: Water source heat pump; Qanat; helical coil heat exchanger; exergy; TRNSYS (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X211068152 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:34:y:2023:i:3:p:560-585
DOI: 10.1177/0958305X211068152
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().