Numerical Optimization and Energetic Advantages of an Innovative Solar Power System Based on Scheffler Receiver Coupled with Volumetric Expanders
Paolo Iodice,
Amedeo Amoresano,
Giuseppe Langella and
Francesco Saverio Marra
Energy & Environment, 2023, vol. 34, issue 3, 602-620
Abstract:
In the current context of increasing public awareness of the externalities of fossil fuel-based energy consumption, improvement in new technologies for energy-saving systems has become a crucial target to reduce both global warming and air pollution. Being motivated by such a critical matter, this study presents an innovative solar thermal plant based on volumetric expanders as work-producing devices coupled with Scheffler solar receivers as a thermal source. Nowadays, Scheffler receivers are well performing owing to high efficiency of the focal receiver which reduce heat losses. Simultaneously, screw expanders are volumetric machines which are able to convert thermal to mechanical power with acceptable efficiency also by expanding vapor-liquid blends at low operating pressures. The numerical model presented in this study evaluates the energetic benefits of the proposed solar power system for various operating situations. Parametric optimization of this solar power plant is then performed in a broad range of operating conditions: the optimum evaporation temperatures, together with the corresponding maximum global efficiencies, were so defined under various solar radiation intensities. The numerical results attained in this research prove that solar electricity generation systems based on screw expanders coupled with the Scheffler receivers are a promising technology.
Keywords: renewable energy resources; steam screw expander; Scheffler receivers; solar thermal power generation; numerical optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X211073808 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:34:y:2023:i:3:p:602-620
DOI: 10.1177/0958305X211073808
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().