Solvent-based recovery of acrylate polymer from display film waste
Nahyeon Lee,
Byungmin Ahn and
Jechan Lee
Energy & Environment, 2024, vol. 35, issue 5, 2296-2306
Abstract:
Acrylate polymer is widely used to manufacture display films as an adhesive. Improper disposal of acrylate polymer-containing display film waste (a kind of E-waste) may cause serious environmental problems. As an effort to develop a display film waste treatment strategy, this study applied a solvent-based method to recover acrylate polymer from display film waste. The solubility of acrylate polymer (e.g. poly( tert -butyl acrylate)) in 18 different organic solvents was calculated using Hansen solubility parameters. As a result, 2-butanol and methyl acetate were chosen as organic solvents for the acrylate polymer recovery from the display film waste. Effects of various recovery parameters (e.g. temperature, time, and stirring speed) on the recovery of acrylate polymer in five different solvent systems consisting of 2-butanol and methyl acetate (2-butanol, methyl acetate, 1:1 mixture, 1:2 mixture, and 2:1 mixture) were explored. 2-Butanol was found to be a better solvent than any others because it is more hydrophobic than methyl acetate. The recovery condition at which the highest acrylate polymer recovery yield in 2-butanol was obtained was T   =  30 °C, t   =  1 h, and stirring speed of 250 r/min, reaching 8.28 wt%. This study would help to develop an E-waste recycling method that can be recovering value-added products from E-waste.
Keywords: Plastic waste; plastic recycling; waste treatment; organic solvent; E-waste (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X231151681 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:35:y:2024:i:5:p:2296-2306
DOI: 10.1177/0958305X231151681
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().