Thermal convective transport energy and environmental applications for magnetised flow with parallel (non-parallel) walls movement simulation of staggered cavity
Nabeela Kousar,
S. Bilal,
Nosheen Fatima,
Wasim Jamshed and
Mohamed R. Eid
Energy & Environment, 2025, vol. 36, issue 6, 2991-3015
Abstract:
The liquid suspension's staggered domains affect everyday life engineering. In this way, both parallel/anti-parallel movement of walls of staggered domains complicates formulation, making it difficult for researchers to detect liquid suspension flow field features. The current article is a key effort in this regard. The staggered cavity is equipped with liquid suspension. In a vertical path, a magnetic field is affected externally. To be more precise, we considered three cases for moving the top and bottom walls. In Case-I, just the top wall moves, while the other walls stay still. Case-II has parallel top and bottom walls. Case-III: anti-parallel wall movement. The left wall is chilly, the top wall is adiabatic, and the right side and bottom walls are heated consistently. The continuity, momentum, energy, and boundary constraints equations determine the physical configuration. Finite element analysis discretizes the governing equations. Every contour graphic show velocity, pressure, and temperature with an external magnetic field. Line graphs help describe velocity components. At a finer refinement level, all instances record kinetic energy versus magnetic field parameter and Reynolds number in tabular and bar graphs. Fluid flow length and velocity always decrease with magnetic field parameter. Kinetic energy is reduced with magnetic field intensity.
Keywords: staggered domain; liquid suspension; magnetohydrodynamics (MHD); hybrid meshing; finite element method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0958305X231215321 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:engenv:v:36:y:2025:i:6:p:2991-3015
DOI: 10.1177/0958305X231215321
Access Statistics for this article
More articles in Energy & Environment
Bibliographic data for series maintained by SAGE Publications ().