Genetic Algorithm Optimisation of An Agent-Based Model for Simulating a Retail Market
Alison J Heppenstall,
Andrew J Evans and
Mark H Birkin
Environment and Planning B, 2007, vol. 34, issue 6, 1051-1070
Abstract:
Traditionally, researchers have used elaborate regression models to simulate the retail petrol market. Such models are limited in their ability to model individual behaviour and geographical influences. Heppenstall et al presented a novel agent-based framework for modelling individual petrol stations as agents and integrated important additional system behaviour through the use of established methodologies such as spatial interaction models. The parameters for this model were initially determined by the use of real data analysis and experimentation. This paper explores the parameterisation and verification of the model through data analysis and by use of a genetic algorithm (GA). The results show that a GA can be used to produce not just an optimised match, but results that match those derived by expert analysis through rational exploration. This may suggest that despite the apparent nonlinear and complex nature of the system, there are a limited number of optimal or near optimal behaviours given its constraints, and that both user-driven and GA solutions converge on them.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1068/b32068 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:34:y:2007:i:6:p:1051-1070
DOI: 10.1068/b32068
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().