EconPapers    
Economics at your fingertips  
 

Daytime and nighttime urban heat islands statistical models for Atlanta

Bumseok Chun and Subhrajit Guhathakurta

Environment and Planning B, 2017, vol. 44, issue 2, 308-327

Abstract: In this study, we empirically model the interactions between 2D and 3D geospatial information and both daytime and nighttime urban heat islands, and estimate the relative importance of various urban heat islands drivers. While previous studies have explored the relationship between the urban heat islands and 2D urban features, the interactions with 3D urban features and neighboring surface characteristics have not been adequately explored. This paper specifies the impacts of these urban features on the urban heat islands intensity during daytime and nighttime, which tend to be quite different. The empirical evidence from this study suggests that while vegetation is the dominant factor for urban heat islands intensity during daytime, the urban canyon has stronger impacts on the urban heat islands than vegetation at night. In addition, adjacent surfaces are more likely to influence nighttime surface temperatures. These results could be used to develop urban design solutions for mitigating the urban heat islands.

Keywords: Urban heat island; spatial analysis; spatial regression; urban canyon effect (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0265813515624685 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:44:y:2017:i:2:p:308-327

DOI: 10.1177/0265813515624685

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:44:y:2017:i:2:p:308-327