EconPapers    
Economics at your fingertips  
 

Assessment of model validation outcomes of a new recursive spatial equilibrium model for the Greater Beijing

Li Wan and Ying Jin

Environment and Planning B, 2019, vol. 46, issue 5, 805-825

Abstract: Robust calibration and validation of applied urban models are prerequisites for their successful, policy-cogent use. This is particularly important today when expert assessment is questioned and closely scrutinized. This paper proposes a new model calibration-validation strategy based on a spatial equilibrium model that incorporates multiple time horizons, such that the predictive capabilities of the model can be empirically tested. The model is implemented for the Greater Beijing city region and the model validation strategy is demonstrated over the Census years 2000 to 2010. Through forward/backward forecasting, the model validation helps to verify the stability of the model parameters as well as the predictive capabilities of the recursive equilibrium framework. The proposed modelling strategy sets a new standard for verifying and validating recursive equilibrium models. We also consider the wider implications of the approach.

Keywords: Model validation; spatial equilibrium; land use transportation interaction (LUTI) models; recursive dynamics; model calibration (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2399808317732575 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:46:y:2019:i:5:p:805-825

DOI: 10.1177/2399808317732575

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:46:y:2019:i:5:p:805-825