Can urban metabolism models advance green infrastructure planning? Insights from ecosystem services research
Daniela Perrotti and
Sven Stremke
Additional contact information
Daniela Perrotti: Universite´ Catholique de Louvain, Belgium
Environment and Planning B, 2020, vol. 47, issue 4, 678-694
Abstract:
Urban metabolism studies have gained momentum in recent years as a means to assess the environmental performance of cities and to point to more resource-efficient strategies for urban development. Recent literature reviews report a growing number of applications of the industrial ecology model for material flow analysis in the design of the built environment. However, applications of material flow analysis in green infrastructure development are scarce. In this article, we argue that: (i) the use of material flow analysis in green infrastructure practice can inform decision-making towards more resource-efficient urban planning; (ii) the ecosystem service concept is critical to operationalize material flow analysis for green infrastructure planning and design, and, through this, can enhance the impact of urban metabolism research on policy making and planning practice. The article draws from a systematic review of literature on urban ecosystem services and benefits provided by green infrastructure in urban regions. The review focuses on ecosystem services that can contribute to a more energy-efficient and less carbon-intensive urban metabolism. Using the Common International Classification of Ecosystem Services as a baseline, we then discuss opportunities for integrating energy provision and climate regulation ecosystem services in material flow analysis. Our discussion demonstrates that the accounting of ecosystem services in material flow analysis enables expressing impacts of green infrastructure on the urban energy mix (renewable energy provision), the magnitude of energy use (mitigation of building energy demand) and the dynamics of biogeochemical processes in cities (carbon sequestration). We finally propose an expanded model for material flow analysis that illustrates a way forward to integrate the ecosystem service concept in urban metabolism models and to enable their application in green infrastructure planning and design.
Keywords: Energy metabolism; material flow analysis; renewable energy provision; climate regulation; nature-based solutions (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2399808318797131 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:47:y:2020:i:4:p:678-694
DOI: 10.1177/2399808318797131
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().