Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan
John HE Taplin and
Yuchao Sun
Environment and Planning B, 2020, vol. 47, issue 7, 1237-1259
Abstract:
Feeder buses provide a small but important part of the public transport system by carrying people between residential areas and transport interchanges. A feeder bus to a train station planned in advance will attract new residents of a housing development to use the bus. The bus route can influence the location choice of a buyer concerned about access for children, the elderly or anyone not wishing to drive a car. Our bus route modelling starts with the bus stops – not the route – to be reached from each dwelling by the shortest possible walk. In demand terms, people locating close to bus stops are more likely to use the service than those choosing more distant locations, and the nearby residences have higher values. The stops-first application determines a feeder bus route to enhance an irregular residential plan covering an area of one square kilometre. The planned road and housing lot locations provide the data for calculating the access measure from each dwelling to each potential bus stop, the closest stop being used. A genetic algorithm tests potential bus stops to find demand maximizing locations, the propensity to use the bus being formulated as an exponential (increasing elasticity) function of walking distance. Then a ‘travelling salesman’ genetic algorithm finds the shortest route linking the stops, so that an efficient circuit route is generated for each alternative number of bus stops, ranging from 7 to 11. More stops not only give better access but also increase the route length, so that total accessibility must be assessed against route length. The distribution of walking distances shows most between 150 and 240 metres, with none more than 400 metres. The results indicate that planning policy should require prior design of a bus route to achieve good walking accessibility, so that residents become accustomed to the convenience of using the bus. This study shows that, at the planning stage, estimating a bi-objective model giving a Pareto front between accessibility and route length can reveal a policy compromise that shortens the route with little reduction in expected patronage.
Keywords: Feeder bus route; bus stops first; optimize stop locations; residential planning; genetic algorithm; dwelling locations; walking distance; travelling salesman problem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2399808318824108 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:47:y:2020:i:7:p:1237-1259
DOI: 10.1177/2399808318824108
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().