Urban function recognition by integrating social media and street-level imagery
Chao Ye,
Fan Zhang,
Lan Mu,
Yong Gao and
Yu Liu
Additional contact information
Fan Zhang: 12465Peking University, China
Lan Mu: University of Georgia, USA
Environment and Planning B, 2021, vol. 48, issue 6, 1430-1444
Abstract:
Recognizing urban functions is crucial for understanding urban spatial structures and urban planning. Previous work has investigated urban functions based on human activities that were derived from mobile phone positioning data, check-in data, taxi data, etc. However, urban functions can only be comprehensively sensed from both human activities and the physical environment together. To do so, a deep learning method was proposed to predict urban functions by integrating social media data and street-level imagery. The verbs extracted from social media posts were taken as the proxy for human activities, and we identified urban physical environmental information from street-level imagery. Then urban functions were uncovered from both the verbs in terms of human activities and street-level imagery from the perspective of the physical environment. Twelve types of urban function were recognized by verbs in social media posts, which were then improved by integrating street-level imagery within the 5th Ring Road of Beijing, China. The experiment demonstrated that verbs as direct proxies for human activities can avoid noise, and the multi-source data integration eliminated biases caused by a single data source. This work provides a comprehensive understanding of urban structure and dynamics for urban management and planning.
Keywords: Urban function; social media; deep neural network; street-level imagery (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/2399808320935467 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:48:y:2021:i:6:p:1430-1444
DOI: 10.1177/2399808320935467
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().