EconPapers    
Economics at your fingertips  
 

Walking in the cities without ground, how 3d complex network volumetrics improve analysis

Lingzhu Zhang and Alain JF Chiaradia

Environment and Planning B, 2022, vol. 49, issue 7, 1857-1874

Abstract: Pedestrian route choice, wayfinding behaviour and movement pattern research rely on objective spatial configuration model and analysis. In 3D indoor and outdoor multi-level buildings and urban built environments (IO-ML-BE), spatial configuration analysis allows to quantify and control for route choice and wayfinding complexity/difficulty. Our contribution is to compare the interaction of the level of definition (LOD) of indoor and outdoor multi-level pedestrian network spatial models and complexity metric analyses. Most studies are indoor or outdoor and oversimplify multi-level vertical connections. Using a novel open data set of a large-scale 3D centreline pedestrian network which implement transport geography 2D data model principles in 3D, nine spatial models and twelve spatial complexity analyses of a large-scale 3D IO-ML-BE are empirically tested with observed pedestrian movement patterns ( N = 17,307). Bivariate regression analyses show that the association with movement pattern increases steadily from R 2 ≈ 0.29 to 0.56 (space syntax, 2.5D) and from R 2 ≈ 0.54 to 0.72 (3D sDNA) as the 3D transport geography spatial model LOD and completeness increases. A multivariate stepwise regression analysis tests the bi-variate findings. A novel 3D hybrid angular-Euclidean analysis was tested for the objective description of 3D multi-level IO-ML-BE route choice and wayfinding complexity. The results suggest that pedestrian route choice, wayfinding and movement pattern analysis and prediction research in a multi-level IO-ML-BE should use high-definition 3D transport geography network spatial model and include interdependent outdoor and indoor spaces with detailed vertical transitions.

Keywords: Route choice; 3D sDNA; transport geography; urban volumetrics; pedestrian volume (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083211070567 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:49:y:2022:i:7:p:1857-1874

DOI: 10.1177/23998083211070567

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:49:y:2022:i:7:p:1857-1874