Algorithmic definitions of street network centrality sub-shapes: The case of superblocks
Chen Feng and
John Peponis
Environment and Planning B, 2022, vol. 49, issue 9, 2451-2466
Abstract:
The shape and distribution of the most integrated streets, collectively called the integration core, is critical to the characterization of local and global street network types in the space syntax literature. The description of the shape, position, and distribution of integration cores relative to the underlying street networks, however, has remained largely intuitive. We propose analytic and algorithmic definitions of integration core types. We then study empirical and experimental superblock designs with rectangular boundaries, as a particular kind of urban spatial syntax. The analysis leads to a clear understanding of the different ways in which the local street network, internal to the superblock, is structured and interfaced with the perimeter. When used as part of an automated sorting and query process applied to a universe of experimentally generated designs, our definitions and algorithms provide new insights about the interplay between the local generators of street network differentiation and the emergent syntactic structures of the superblock as a whole.
Keywords: Street network; superblock; space syntax; integration core; typology (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083221098739 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:49:y:2022:i:9:p:2451-2466
DOI: 10.1177/23998083221098739
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().