The cityseer Python package for pedestrian-scale network-based urban analysis
Gareth Simons
Environment and Planning B, 2023, vol. 50, issue 5, 1328-1344
Abstract:
cityseer-api is a Python package consisting of computational tools for fine-grained street-network and land-use analysis, helpful in assessing the morphological precursors to vibrant neighbourhoods. It is underpinned by network-based methods developed specifically for urban analysis at the pedestrian scale. cityseer-api computes a variety of node and segment-based network centrality methods, land-use accessibility and mixed-use measures, and statistical aggregations. Accessibilities and aggregations are computed dynamically over the street-network while taking walking distance thresholds and the direction of approach into account, and can optionally incorporate spatial impedances and network decomposition to increase spatial precision. The use of Python facilitates compatibility with popular computational tools for network manipulation (NetworkX), geospatial topology (shapely), geospatial data state management (GeoPandas), and the NumPy stack of scientific packages. The provision of robust network cleaning tools aids the use of OpenStreetMap data for network analysis. Underlying loop-intensive algorithms are implemented in Numba JIT compiled code so that the methods scale efficiently to larger cities and regions. Online documentation is available from cityseer.benchmarkurbanism.com, and the Github repository is available at github.com/benchmark-urbanism/cityseer. Example notebooks are available at cityseer.benchmarkurbanism.com/examples/
Keywords: Computation; data science; geographical information systems; land-use analysis; morphometrics; network analysis; spatial analysis; urban analytics; urban planning; urban morphology; urbanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083221133827 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:50:y:2023:i:5:p:1328-1344
DOI: 10.1177/23998083221133827
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().