Analyzing the age-friendliness of the urban environment using computer vision methods
Fereshteh Moradi,
Nimish Biloria and
Mukesh Prasad
Environment and Planning B, 2023, vol. 50, issue 8, 2294-2308
Abstract:
The accelerated growth of cities and urban populations over recent decades and the complexity and diversity of urban areas demands proficient spatial affordance assessment especially for the vulnerable sections of the society. Lately machine learning and computer vision models have become highly competent in analyzing urban images for assessing the built environment. This study harnesses the potential of computer vision techniques to assess the age-friendliness of urban areas. The developed machine learning model utilizes Google’s Street View images and is trained using lived experience-based image ratings provided by elderly participants. Newly assigned urban images are accordingly rated for their level of age-friendliness by the model with an accuracy of 85%. This paper elaborates upon the associated literature review, explains the data collection approach and the developed machine learning model. The success of the implementation is also demonstrated, confirming the validity of the proposed methodology.
Keywords: Urban environment; age-friendly; computer vision; machine learning; Google Street View images (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083231153862 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:50:y:2023:i:8:p:2294-2308
DOI: 10.1177/23998083231153862
Access Statistics for this article
More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().