EconPapers    
Economics at your fingertips  
 

Modeling the relationship between urban tree canopy, landscape heterogeneity, and land surface temperature: A machine learning approach

Bev Wilson, Shakil Bin Kashem and Lily Slonim

Environment and Planning B, 2024, vol. 51, issue 8, 1895-1912

Abstract: Cities across the United States and around the globe are embracing urban greening as a strategy for mitigating the effects of rising temperatures on human health and quality-of-life. Better understanding how the spatial configuration of tree canopy influences land surface temperature should help to increase the positive impacts of urban greening. This study applies a machine learning approach for modeling the relationship between urban tree canopy, landscape heterogeneity, and land surface temperature (LST) using data from nine cities located in nine different climate zones of the United States. We collected summer LST data from the U.S. Geological Survey (USGS) Analysis Ready Data series and processed them to derive mean, minimum, and maximum LST in degrees Fahrenheit for each Census block group within the cities considered. We also calculated the percentage of each block group comprised by the land cover designations in the 2016 or 2019 National Land Cover Database (NLCD) maintained by the USGS, depending on the vintage of the available LST data. High resolution tree canopy data were purchased for all the study cities and the spatial configuration of tree canopy was measured at the block group level using established landscape metrics. Landscape metrics of the waterbodies were also calculated to incorporate the cooling effects of waterbodies. We used a Generalized Boosted Regression Model (GBM) algorithm to predict LST from the collected data. Our results show that tree canopy exerts a consistent and significant influence on predicted land surface temperatures across all study cities, but that the configuration of tree canopy and water patches matters more in some locations than in others. The findings underscore the importance of considering the local climate and existing landscape features when planning for urban greening.

Keywords: Urban tree canopy; land surface temperature; urban greening; machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/23998083241226848 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:envirb:v:51:y:2024:i:8:p:1895-1912

DOI: 10.1177/23998083241226848

Access Statistics for this article

More articles in Environment and Planning B
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:envirb:v:51:y:2024:i:8:p:1895-1912