EconPapers    
Economics at your fingertips  
 

An Adaptive Aggregation Scheduling Algorithm Based on the Grid Partition in Large-Scale Wireless Sensor Networks

Xiaogang Qi, Lifang Liu, Gengzhong Zheng and Mande Xie

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 10, 283209

Abstract: Data aggregation algorithm aims to reduce the redundant information by gathering the sensed data, save energy, and prolong the lifetime of the network. However, the data aggregation technology will increase the network transmission delay of wireless sensor networks. Minimum-latency aggregation scheduling is designed to minimize the number of scheduled time slots to perform an aggregation. In this paper, we present an Adaptive Aggregation Scheduling Algorithm based on the Grid Partition (AASA-GP) in large-scale wireless sensor networks. By dividing the network into grids based on the geographical information, we allocate the channels according to the grid coordinates. Nodes with the same grid coordinates use the same channel and the adjacent grids use the different channels, so we can effectively avoid the wireless media transmission interference, increase the parallel transfer rate, and reduce the aggregation latency. Our extensive evaluation results demonstrate the superiority of the AASA-GP. For small-scale networks, the resultant latency is comparable with the best practice, and it is more suitable for large-scale wireless sensor networks.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/283209 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:10:p:283209

DOI: 10.1155/2015/283209

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:283209