EconPapers    
Economics at your fingertips  
 

Energy-Efficient Monitoring in Software Defined Wireless Sensor Networks Using Reinforcement Learning: A Prototype

Ru Huang, Xiaoli Chu, Jie Zhang and Yu Hen Hu

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 10, 360428

Abstract: Software defined wireless networks (SDWNs) present an innovative framework for virtualized network control and flexible architecture design of wireless sensor networks (WSNs). However, the decoupled control and data planes and the logically centralized control in SDWNs may cause high energy consumption and resource waste during system operation, hindering their application in WSNs. In this paper, we propose a software defined WSN (SDWSN) prototype to improve the energy efficiency and adaptability of WSNs for environmental monitoring applications, taking into account the constraints of WSNs in terms of energy, radio resources, and computational capabilities, and the value redundancy and distributed nature of data flows in periodic transmissions for monitoring applications. Particularly, we design a reinforcement learning based mechanism to perform value-redundancy filtering and load-balancing routing according to the values and distribution of data flows, respectively, in order to improve the energy efficiency and self-adaptability to environmental changes for WSNs. The optimal matching rules in flow table are designed to curb the control signaling overhead and balance the distribution of data flows for achieving in-network fusion in data plane with guaranteed quality of service (QoS). Experiment results show that the proposed SDWSN prototype can effectively improve the energy efficiency and self-adaptability of environmental monitoring WSNs with QoS.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/360428 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:10:p:360428

DOI: 10.1155/2015/360428

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:360428