EconPapers    
Economics at your fingertips  
 

An Efficient Algorithm of Constructing Virtual Backbone Scheduling for Maximizing the Lifetime of Dual-Radio Wireless Sensor Networks

Bing-Hong Liu, Pham Van-Trung and Ngoc-Tu Nguyen

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 10, 475159

Abstract: Wireless sensor networks have often been used to monitor environmental conditions, such as temperature, sound, and pressure. Because the sensors are expected to work on batteries for a long time without charging their batteries, the major challenge in the design of wireless sensor networks is to enhance the network lifetime. Recently, many researchers have studied the problem of constructing virtual backbones, which are backbones used for different time periods, to prolong the network lifetime. In this paper, we study the problem of constructing virtual backbones in dual-radio wireless sensor networks to maximize the network lifetime, called the Maximum Lifetime Backbone Scheduling for Dual-Radio Wireless Sensor Network problem, where each sensor is equipped with two radio interfaces. The problem is shown to be NP-complete here. In addition, rather than proposing a centralized algorithm, a distributed algorithm, called a Dominating-Set-Based Algorithm (DSBA), is proposed for a wide range of wireless sensor networks to find a backbone when a new one is required. Simulation results show that the proposed algorithm outperforms some existing algorithms.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/475159 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:10:p:475159

DOI: 10.1155/2015/475159

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:475159