EconPapers    
Economics at your fingertips  
 

PSF Estimation via Gradient Cepstrum Analysis for Image Deblurring in Hybrid Sensor Network

Mingzhu Shi and Shuaiqi Liu

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 10, 758034

Abstract: In hybrid sensor networks, information fusion from heterogeneous sensors is important, but quite often information such as image is blurred. Single image deblurring is a highly ill-posed problem and usually regularized by alternating estimating point spread function (PSF) and recovering blur image, which leads to high complexity and low efficiency. In this paper, we first propose an efficient PSF estimation algorithm based on gradient cepstrum analysis (GCA). Then, to verify the accuracy of the strategy, estimated PSFs are used for image deconvolution step, which exploits a novel total variation model coupling with a gradient fidelity term. We also adopt an alternating direction method (ADM) numerical algorithm with rapid convergence and high robustness to optimize the energy function. Both synthetic and real blur experiments show that our scheme can estimate PSF rapidly and produce comparable results without involving long time consuming.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/758034 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:10:p:758034

DOI: 10.1155/2015/758034

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:10:p:758034