EconPapers    
Economics at your fingertips  
 

A Machine Learning System for Routing Decision-Making in Urban Vehicular Ad Hoc Networks

Wei Kuang Lai, Mei-Tso Lin and Yu-Hsuan Yang

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 3, 374391

Abstract: In vehicular ad hoc networks (VANETs), network topology and communication links frequently change due to the high mobility of vehicles. Key challenges include how to shorten transmission delays and increase the stability of transmissions. When establishing routing paths, most research focuses on detecting traffic and selecting roads with higher vehicle densities in order to transmit packets, thus avoiding carry-and-forward scenarios and decreasing transmission delays; however, such approaches may not obtain accurate real-time traffic densities by periodically monitoring each road because vehicle densities change so rapidly. In this paper, we propose a novel routing information system called the machine learning-assisted route selection (MARS) system to estimate necessary information for routing protocols. In MARS, road information is maintained in roadside units with the help of machine learning. We use machine learning to predict the moves of vehicles and then choose some suitable routing paths with better transmission capacity to transmit packets. Further, MARS can help to decide the forwarding direction between two RSUs according to the predicted location of the destination and the estimated transmission delays in both forwarding directions. Our proposed system can provide in-time routing information for VANETs and greatly enhance network performance.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/374391 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:3:p:374391

DOI: 10.1155/2015/374391

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:3:p:374391