EconPapers    
Economics at your fingertips  
 

A Model-Driven Engineering Process for Autonomic Sensor-Actuator Networks

Carlos Vidal, Carlos Fernández-Sánchez, Jessica Díaz and Jennifer Pérez

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 3, 684892

Abstract: Cyber-Physical Systems (CPS) are the next generation of embedded ICT systems designed to be aware of the physical environment by using sensor-actuator networks to provide users with a wide range of smart applications and services. Many of these smart applications are possible due to the incorporation of autonomic control loops that implement advanced processing and analysis of historical and real-time data measured by sensors; plan actions according to a set of goals or policies; and execute plans through actuators. The complexity of this kind of systems requires mechanisms that can assist the system's design and development. This paper presents a solution for assisting the design and development of CPS based on Model-Driven Development: MindCPS (doMaIN moDel for CPS) solution. MindCPS solution is based on a model that provides modelling primitives for explicitly specifying the autonomic behaviour of CPS and model transformations for automatically generating part of the CPS code. In addition to the automatic code generation, the MindCPS solution offers the possibility of rapidly configuring and developing the core behaviour of a CPS, even for nonsoftware engineers. The MindCPS solution has been put into practice to deploy a smart metering system in a demonstrator located at the Technical University of Madrid.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/684892 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:3:p:684892

DOI: 10.1155/2015/684892

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:3:p:684892