EconPapers    
Economics at your fingertips  
 

Distributed Data Clustering via Opinion Dynamics

Gabriele Oliva, Damiano La Manna, Adriano Fagiolini and Roberto Setola

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 3, 753102

Abstract: We provide a distributed method to partition a large set of data in clusters, characterized by small in-group and large out-group distances. We assume a wireless sensors network in which each sensor is given a large set of data and the objective is to provide a way to group the sensors in homogeneous clusters by information type. In previous literature, the desired number of clusters must be specified a priori by the user. In our approach, the clusters are constrained to have centroids with a distance at least ε between them and the number of desired clusters is not specified. Although traditional algorithms fail to solve the problem with this constraint, it can help obtain a better clustering. In this paper, a solution based on the Hegselmann-Krause opinion dynamics model is proposed to find an admissible, although suboptimal, solution. The Hegselmann-Krause model is a centralized algorithm; here we provide a distributed implementation, based on a combination of distributed consensus algorithms. A comparison with k -means algorithm concludes the paper.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/753102 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:3:p:753102

DOI: 10.1155/2015/753102

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:3:p:753102