EconPapers    
Economics at your fingertips  
 

An Improved PSO Algorithm for Distributed Localization in Wireless Sensor Networks

Dan Li and Xian bin Wen

International Journal of Distributed Sensor Networks, 2015, vol. 11, issue 7, 970272

Abstract: Accurate and quick localization of randomly deployed nodes is required by many applications in wireless sensor networks and always formulated as a multidimensional optimization problem. Particle swarm optimization (PSO) is feasible for the localization problem because of its quick convergence and moderate demand for computing resources. This paper proposes a distributed two-phase PSO algorithm to solve the flip ambiguity problem, and improve the efficiency and precision. In this work, the initial search space is defined by bounding box method and a refinement phase is put forward to correct the error due to flip ambiguity. Moreover, the unknown nodes which only have two references or three near-collinear references are tried to be localized in our research. Simulation results indicate that the proposed distributed localization algorithm is superior to the previous algorithms.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1155/2015/970272 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:11:y:2015:i:7:p:970272

DOI: 10.1155/2015/970272

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:11:y:2015:i:7:p:970272