A six-direction absolute displacement sensor for time-delayed control based on quasi-zero-stiffness property
Guyue Jiao and
Xiuting Sun
International Journal of Distributed Sensor Networks, 2016, vol. 12, issue 10, 1550147716673844
Abstract:
A novel six-direction sensor for absolute vibration motion is proposed in this study for the measurement of absolute motions by employing multi-direction quasi-zero-stiffness property. Scissor-like structures with pre-deformed springs are applied symmetrically in the proposed sensor. Based on the mathematical modeling of the proposed six-direction sensor, it is shown that the stiffness and damping properties of the sensor are adjustable nonlinear functions which are dependent on the structural parameters of scissor-like structures. And then, by utilizing bifurcation theory and perturbation method, the structural parameters are optimized for the improvement of measurement accuracy. For the realization of the approximate fixed point for a moving vibration object, the vibration from measurement object to the sensor is isolated, and thus the sensor could obtain the absolute motions. Utilizing the signals obtained by the proposed sensor directly, better vibration/suppression effectiveness is achieved. The results provide a novel and significant six-direction absolute motion measurement method by utilizing multi-direction quasi-zero-stiffness property with noticeable isolation performance only with passive elements.
Keywords: Motion measurement; nonlinear vibration; multi-direction sensor; active control (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147716673844 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:12:y:2016:i:10:p:1550147716673844
DOI: 10.1177/1550147716673844
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().