EconPapers    
Economics at your fingertips  
 

Enhancing DPM Techniques in Outdoor Industrial WSN Applications

Kacem Halim, Glaoui Mohamed and Gharsallah Ali

International Journal of Distributed Sensor Networks, 2016, vol. 12, issue 7, 1350246

Abstract: The main challenge during designing a new node is reducing the power consumption as much as possible to maximize the lifetime of wireless sensor network (WSN) since most nodes are powered from a finite source of energy, in general nonrechargeable battery. In this paper we propose a solution to minimize the power consumed by the microcontroller (MCU), which is the main processing component in the node. Our energy power optimization solution is based on two techniques: firstly enhance dynamic power management (DPM) policies by reducing MCU consumption during standby mode; secondly, focus on temperature impact on low power consumption. In this context, a microcontroller dynamic power management (MDPM) algorithm is proposed to improve DPM scheme. This algorithm is deployed on a measurement circuit able to calculate the consumption during the different low power modes in real environments conditions and then selects the better one. These two techniques are combined in a novel way to provide an efficient energy solution for wireless sensor networks nodes. Our solution is validated and qualified with STM32F446RE MCU.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/155014771350246 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:12:y:2016:i:7:p:1350246

DOI: 10.1177/155014771350246

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:12:y:2016:i:7:p:1350246