Directed broadcasting with mobility prediction for vehicular sensor networks
Si-Ho Cha,
Jong-Eon Lee and
Minwoo Ryu
International Journal of Distributed Sensor Networks, 2016, vol. 12, issue 7, 1550147716657930
Abstract:
This article suggests a new directed broadcasting method with mobility prediction of moving vehicles in vehicular sensor networks (VSNs). VSNs can play a critical role to ensure prompt delivery of real-time sensing data and be able to prevent various road dangers. The suggested method is particularly for vehicle safety communication (VSC) on highway roads by using directed broadcasting between vehicles. In VSNs, broadcasting is the most suitable communication mechanism for VSC. The simplest broadcasting mechanism is flooding, which introduces the redundant message retransmission and the broadcast storm problem. It is because all vehicles rebroadcast the messages in flooding. The broadcast storm problem can be addressed with selective flooding schemes which select rebroadcast vehicles to perform rebroadcasting. However, selective flooding schemes cannot promise enough reliability for VSC because of the highly dynamic topology and frequent disconnections of vehicular networks. Fast movement and frequent topology changes cause repeated link breakages and it increases the packet loss rate of vehicular networks. In this article, we propose a mobility prediction-based directed broadcasting (MPDB) protocol to achieve a reliable broadcasting in VSNs. MPDB protocol broadcasts emergent messages only to the rear vehicles on the same road. MPDB protocol consists of two phases: (i) mobility prediction phase and (ii) broadcasting phase. The mobility prediction can be acquired through periodical beaconing. In mobility prediction phase, each vehicle gets its rear vehicle set on the same road through neighbour’s position, inter-vehicle distance, relative speed and moving direction. In broadcast phase, MPDB protocol selects a vehicle having the largest link available time (LAT) values acquired by the mobility prediction as a rebroadcast vehicle among the rear vehicle set acquired in previous phase. By using LAT for broadcasting propagation, MPDB protocol can intensify the reliability of the message dissemination and also prevent the broadcast storm problem in vehicular networks. The simulation results show that MPDB protocol has better performance improvement in terms of average packet rate and packet delay.
Keywords: VANET; broadcasting; vehicle safety communication; mobility prediction; link available time (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147716657930 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:12:y:2016:i:7:p:1550147716657930
DOI: 10.1177/1550147716657930
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().