Dynamic clustering and compressive data gathering algorithm for energy-efficient wireless sensor networks
Ce Zhang,
Xia Zhang,
Ou Li,
Yanping Yang and
Guangyi Liu
International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 10, 1550147717738905
Abstract:
Existing clustering algorithms of data gathering in wireless sensor networks neglect the impact of event source on the data spatial correlation. In this article, we proposed a compressed sensing–based dynamic clustering algorithm centred on event source. The main challenges of the prescribed scheme are how to model the impact of event source on spatial correlation and how to obtain the location of event source. To solve both the problems, we first formulate the Euclidean distance spatial correlation model and employ joint sparsity model-1 to describe the impact on the spatial correlation caused by event source. Based on these models, we conceive an efficient clustering scheme, which exploits the compressive data for computing the location of event source and for dynamic clustering. Simulation results show that the proposed compressed sensing–based dynamic clustering algorithm centred on event source outperforms the existing data gathering algorithms in decreasing the communication cost, saving the network energy consumption as well as extending the network survival time under a same accuracy. Additionally, the three performance affecting factors, namely, the attenuation coefficient of event sources, the distance between event sources and the number of event sources, are investigated and provided for constituting the application condition of the compressed sensing–based dynamic clustering algorithm centred on event source. The proposed scheme is potential in large-scale wireless sensor networks such as sensor-based IoT application.
Keywords: Wireless sensor networks; data gather; compressed sensing; event source; Euclidean distance; spatial correlation (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717738905 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:10:p:1550147717738905
DOI: 10.1177/1550147717738905
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().