EconPapers    
Economics at your fingertips  
 

Biomechanically influenced mobile and participatory pedestrian data for bridge monitoring

Ekin Ozer and Maria Q Feng

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 4, 1550147717705240

Abstract: Future structural health monitoring systems are evolving toward crowdsourced, autonomous, sustainable forms based on which damage-indicative structural features can be identified. Unlike conventional sensor systems, they serve as non-stationary, mobile, and distributed sensor network components. For example, smartphone sensors carried by pedestrians decouple from the structure of interest, making it difficult to measure structural vibration. Taking bridges as instances, smartphone sensor data contain not only the bridge vibration but also the pedestrians’ biomechanical features. In this article, pedestrians’ smartphone data are used to conduct force estimation and modal identification for structural health monitoring purposes. Two major pedestrian activities, walking and standing, are adopted to estimate walk-induced forces on structures and identify modal parameters, respectively. First, vibration time history of a walking pedestrian combined with pedestrian weight is a measure of dynamic forces imposed on the structure. Second, standing pedestrian’s smartphone sensors provide spectral peaks which are mixtures of structural and biomechanical vibrations. Eliminating biomechanical content reveals structural modal properties which are sensitive to structural integrity. This study presents the first structural health monitoring application recruiting pedestrians in a testbed bridge monitoring example. Orchestrating pervasive and participatory pedestrian data might bring new frontiers to structural health monitoring through a smart, mobile, and urban sensing framework.

Keywords: Structural health monitoring; mobile sensing; modal identification; biomechanical systems; transfer functions; force identification; smartphone sensors; pedestrian bridges (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717705240 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717705240

DOI: 10.1177/1550147717705240

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:4:p:1550147717705240