EconPapers    
Economics at your fingertips  
 

Spatiotemporal variable and parameter selection using sparse hybrid genetic algorithm for traffic flow forecasting

Xiaobo Chen, Zhongjie Wei, Xiang Liu, Yingfeng Cai, Zuoyong Li and Feng Zhao

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 6, 1550147717713376

Abstract: Short-term traffic flow forecasting is a difficult yet important problem in intelligent transportation systems. Complex spatiotemporal interactions between the target road segment and other road segments can provide important information for the accurate forecasting. Meanwhile, spatiotemporal variable selection and traffic flow prediction should be solved in a unified framework such that they can benefit from each other. In this article, we propose a novel sparse hybrid genetic algorithm by introducing sparsity constraint and real encoding scheme into genetic algorithm in order to optimize short-term traffic flow prediction model based on least squares support vector regression. This method can integrate spatiotemporal variable selection, parameter selection as well as traffic flow prediction in a unified framework, indicating that the “goodness,†that is, contribution, of selected spatiotemporal variables and optimized parameters directly depends on the final traffic flow prediction accuracy. The real-world traffic flow data are collected from 24 observation sites located around the intersection of Interstate 205 and Interstate 84 in Portland, OR, USA. The experimental results show that the proposed sparse hybrid genetic algorithm-least square support vector regression prediction model can produce better performance but with much fewer spatiotemporal variables in comparison with other related models.

Keywords: Traffic flow forecasting; spatiotemporal variable selection; genetic algorithm; road traffic network; machine learning (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717713376 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717713376

DOI: 10.1177/1550147717713376

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:6:p:1550147717713376