EconPapers    
Economics at your fingertips  
 

Distributed and morphological operation-based data collection algorithm

Yalin Nie, Haijun Wang, Yujie Qin and Zeyu Sun

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 7, 1550147717717593

Abstract: When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.

Keywords: Wireless sensor networks; morphological operations; erosion; dilation; data collection (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717717593 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717717593

DOI: 10.1177/1550147717717593

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717717593