EconPapers    
Economics at your fingertips  
 

On dynamic performance estimation of fault-prone Infrastructure-as-a-Service clouds

Wanbo Zheng, Yuandou Wang, Yunni Xia, Quanwang Wu, Lei Wu, Kunyin Guo, Weiling Li, Xin Luo and Qingsheng Zhu

International Journal of Distributed Sensor Networks, 2017, vol. 13, issue 7, 1550147717718514

Abstract: The cloud computing paradigm enables elastic resources to be scaled at run time satisfy customers’ demand. Cloud computing provisions on-demand service to users based on a pay-as-you-go manner. This novel paradigm enables cloud users or tenant users to afford computational resources in the form of virtual machines as utilities, just like electricity, instead of paying for and building computing infrastructures by their own. Performance usually specified through service level agreement performance commitment of clouds is one of key research challenges and draws great research interests. Thus, performance issues of cloud infrastructures have been receiving considerable interest by both researchers and practitioners as a prominent activity for improving cloud quality. This work develops an analytical approach to dynamic performance modeling and trend prediction of fault-prone Infrastructure-as-a-Service clouds. The proposed analytical approach is based on a time-series and stochastic-process-based model. It is capable of predicting the expected system responsiveness and request rejection rate under variable load intensities, fault frequencies, multiplexing abilities, and instantiation processing times. A comparative study between theoretical and measured performance results through a real-world campus cloud is carried out to prove the correctness and accuracy of the proposed prediction approach.

Keywords: Infrastructure-as-a-Service cloud; performance prediction; Pareto distribution (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147717718514 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718514

DOI: 10.1177/1550147717718514

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:13:y:2017:i:7:p:1550147717718514