Primary user characterization for cognitive radio wireless networks using long short-term memory
Johana Hernández,
Danilo López and
Nelson Vera
International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 11, 1550147718811828
Abstract:
Cognitive radio is a paradigm that proposes managing the radio electric spectrum dynamically by integrating the spectrum sensing, decision-making, sharing, and mobility stages. In the decision-making stage, the best available channel is selected for transmitting secondary user data in an opportunistic fashion, and the success of that stage depends on the efficiency of the primary user characterization model. Use of the long short-term memory technique based on the deep learning concept is proposed in order to reduce the forecasting error present in the future estimation of primary users in the GSM and WiFi frequency bands. The results show that long short-term memory has the capacity needed to improve channel use forecasting significantly more than other methods such as multilayer perceptron neural networks, Bayesian networks, and adaptive neuro-fuzzy inference systems (ANFIS-Grid). It is concluded that although long short-term memory exhibits better performance generating forecasts for time series, computing complexity is higher due to the existence of input, forget, and output gates within the neural structure; therefore, implementation is feasible in cognitive radio networks based on centralized network topologies.
Keywords: Cognitive radio; neural network; deep learning; GSM; long short-term memory (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718811828 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718811828
DOI: 10.1177/1550147718811828
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().