EconPapers    
Economics at your fingertips  
 

High-accuracy localization for indoor group users based on extended Kalman filter

Tian Wang, Yuzhu Liang, Yaxin Mei, Muhammad Arif and Chunsheng Zhu

International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 11, 1550147718812722

Abstract: Indoor localization has attracted increasing research attentions in the recent years. However, many important issues still need to be further studied to keep pace with new requirements and technical progress, such as real-time operation, high accuracy, and energy efficiency. In order to meet the high localization accuracy requirement and the high localization dependable requirement in some scenarios, we take the users as a group to utilize the mutual distance information among them to get better localization performance. Moreover, we design a mobile group localization method based on extended kalman filter and believable factor of non-localized nodes, which can alleviate the influence caused by environmental noisy and unstable wireless signals to improve the localization accuracy. Besides, we implement a real system based on ZigBee technique and perform experiments on the campus of Huaqiao University. Experimental results and theoretical analysis validate the effectiveness of the proposed method.

Keywords: Cooperative localization; Kalman filter; localization performance; mobile groups (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718812722 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718812722

DOI: 10.1177/1550147718812722

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:14:y:2018:i:11:p:1550147718812722