EconPapers    
Economics at your fingertips  
 

Adaptive sensing scheme using naive Bayes classification for environment monitoring with drone

Yao-Hua Ho, Yu-Te Huang, Hao-Hua Chu and Ling-Jyh Chen

International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 1, 1550147718756036

Abstract: Environmental sensors are important for collecting data to understand environmental changes and analyze environmental issues. In order to effectively monitor environmental changes, high-density sensor deployment and evenly distributed spatial distance between sensors become the requirements and desired properties for such applications. In many applications, sensors are deployed in locations that are difficult and dangerous to reach (e.g. mountaintop or skyscraper roof). To collect data from those sensors, unmanned aerial vehicles are used to act as data mules to overcome the problem of collecting data in challenging environments. In this article, we extend the adaptive return-to-home sensing algorithm with a parameter-tuning algorithm that combines naive Bayes classification and binary search to adapt adaptive return-to-home sensing parameters effectively on the fly. The proposed approach is able to (1) optimize number of sensing attempts, (2) reduce oscillation of the distance for consecutive attempts, and (3) reserve enough power for drone to return-to-home. Our results show that the naive Bayes classification–enhanced adaptive return-to-home sensing scheme is able to avoid oscillation in sensing and guarantees return-to-home feature while behaving more cost-effective in parameter tuning than the other machine learning–based approaches.

Keywords: Adaptive sensing; naive Bayes classification; environment monitoring; drone coordination; sensor network (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718756036 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718756036

DOI: 10.1177/1550147718756036

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:14:y:2018:i:1:p:1550147718756036