Inertial measurement unit–aided dual-frequency radio frequency identification localization in line-of-sight and non-line-of-sight hybrid environment
Jie Wu,
Minghua Zhu,
Bo Xiao and
Wei He
International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 3, 1550147718762033
Abstract:
The mitigation of non-line-of-sight propagation conditions is one of main challenges in wireless signal–based indoor localization. When radio frequency identification localization technology is applied in applications, the received signal strength fluctuates frequently due to the shade and multipath effect of radio frequency signal, which could result in localization inaccuracy. In particular, when tag carriers are walking in line-of-sight and non-line-of-sight hybrid environment, great attenuation of received signal strength will happen, which would result in great positioning deviation. The article puts forward a dual-frequency radio frequency identification–based indoor localization approach in line-of-sight–non-line-of-sight hybrid environment with the help of inertial measurement unit. Dual-frequency radio frequency identification includes passive radio frequency identification and active radio frequency identification. Passive radio frequency identification is used to assist in determining the tag initial location with passive reader. Active radio frequency identification is used to locate the tag and send the sensor information to active radio frequency identification readers. The proposed method includes three improvements over previous received signal strength–based positioning methods: inertial measurement unit–aided received signal strength filtering, inertial measurement unit–aided line-of-sight/non-line-of-sight distinguishing, and inertial measurement unit–aided line-of-sight/non-line-of-sight environment switching. Also, Cramér–Rao low bound is calculated to prove theoretically that indoor positioning accuracy for the proposed method in line-of-sight and non-line-of-sight mixed environment is higher than position precision using only received signal strength information. Experiments are conducted to show that the proposed method can reduce the mean positioning error to around 3 m without site survey.
Keywords: Dual-frequency radio frequency identification; indoor localization; non-line-of-sight; received signal strength; inertial measurement unit (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718762033 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:3:p:1550147718762033
DOI: 10.1177/1550147718762033
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().