EconPapers    
Economics at your fingertips  
 

Mining spatial–temporal motion pattern for vessel recognition

Lu Sun, Wei Zhou, Jian Guan and You He

International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 5, 1550147718779563

Abstract: Approaches of vessel recognition are mostly accomplished by sensing targets and extracting target features, without taking advantage of spatial and temporal motion features. With maritime situation management systems widely applied, vessels’ spatial and temporal state information can be obtained by many kinds of distributed sensors, which is easy to achieve long-time accumulation but are often forgotten in databases. In order to get valuable information from large-scale stored trajectories for unknown vessel recognition, a spatial and temporal constrained trajectory similarity model and a mining algorithm based on spatial and temporal constrained trajectory similarity are proposed in this article by searching trajectories with similar motion features. Based on the idea of finding matching points between trajectories, baseline matching points are first defined to provide time reference for trajectories at different time, then the almost matching points are obtained by setting the spatial and temporal constraints, and the similarity of pairwise almost matching points is defined, which derives the spatial and temporal similarity of trajectories. By searching the matching points from trajectories, the similar motion pattern is extracted. Experiments on real data sets show that the proposed algorithm is useful for similar moving behavior mining from historic trajectories, which can strengthen motion feature with the length increases, and the support for vessel with unknown property is larger than other models.

Keywords: Spatial and temporal constrained; trajectory similarity; trajectory mining; target recognition; information fusion (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718779563 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718779563

DOI: 10.1177/1550147718779563

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:14:y:2018:i:5:p:1550147718779563