EconPapers    
Economics at your fingertips  
 

An analysis on the revoking mechanisms for JSON Web Tokens

László Viktor Jánoky, János Levendovszky and Péter Ekler

International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 9, 1550147718801535

Abstract: JSON Web Tokens provide a scalable solution with significant performance benefits for user access control in decentralized, large-scale distributed systems. Such examples would entail cloud-based, micro-services styled systems or typical Internet of Things solutions. One of the obstacles still preventing the wide-spread use of JSON Web Token–based access control is the problem of invalidating the issued tokens upon clients leaving the system. Token invalidation presently takes a considerable processing overhead or a drastically increased architectural complexity. Solving this problem without losing the main benefits of JSON Web Tokens still remains an open challenge which will be addressed in the article. We are going to propose some solutions to implement low-complexity token revocations and compare their characteristics in different environments with the traditional solutions. The proposed solutions have the benefit of preserving the advantages of JSON Web Tokens, while also adhering to stronger security constraints and possessing a finely tuneable performance cost.

Keywords: JSON Web Tokens; security; access control; distributed systems (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718801535 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718801535

DOI: 10.1177/1550147718801535

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718801535