EconPapers    
Economics at your fingertips  
 

Sensor-cloud data acquisition based on fog computation and adaptive block compressed sensing

Zhou-zhou Liu and Shi-ning Li

International Journal of Distributed Sensor Networks, 2018, vol. 14, issue 9, 1550147718802259

Abstract: The emergence of sensor-cloud system has completely changed the one-to-one service mode of traditional wireless sensor networks, and it greatly expands the application field of wireless sensor networks. As the high delay of large-scale data processing tasks in sensor-cloud, a sensor-cloud data acquisition scheme based on fog computing and adaptive block compressive sensing is proposed. First, the sensor-cloud framework based on fog computing is constructed, and the fog computing layer includes many wireless mobile nodes, which helps to realize the implementation of information transfer management between lower wireless sensor networks layer and upper cloud computing layer. Second, in order to further reduce network traffic and improve data processing efficiency, an adaptive block compressed sensing data acquisition strategy is proposed in the lower wireless sensor networks layer. By dynamically adjusting the size of the network block and building block measurement matrix, the implementation of sensor compressed sensing data acquisition is achieved; in order to further balance the lower wireless sensor networks’ node energy consumption, reduce the time delay of data processing task in fog computing layer, the mobile node data acquisition path planning strategy and multi-mobile nodes collaborative computing system are proposed. Through the introduction of the fitness value constraint transformation processing technique and parallel discrete elastic collision optimization algorithm, the efficient processing of the fog computing layer data is realized. Finally, the simulation results show that the sensor-cloud data acquisition scheme can effectively achieve large-scale sensor data efficient processing. Moreover, compared with cloud computing, the network traffic is reduced by 20% and network task delay is reduced by 12.8%–20.1%.

Keywords: Sensor-cloud; wireless sensor networks; fog computing; compressive sensing; elastic collision optimization algorithm (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147718802259 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718802259

DOI: 10.1177/1550147718802259

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:14:y:2018:i:9:p:1550147718802259