Human action recognition based on low- and high-level data from wearable inertial sensors
Irvin Hussein Lopez-Nava and
Angélica Muñoz-Meléndez
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 12, 1550147719894532
Abstract:
Human action recognition supported by highly accurate specialized systems, ambulatory systems, or wireless sensor networks has a tremendous potential in the areas of healthcare or wellbeing monitoring. Recently, several studies carried out focused on the recognition of actions using wearable inertial sensors, in which raw sensor data are used to build classification models, and in a few of them high-level representations are obtained which are directly related to anatomical characteristics of the human body. This research focuses on classifying a set of activities of daily living, such as functional mobility, and instrumental activities of daily living, such as preparing meals, performed by test subjects in their homes in naturalistic conditions. The joint angles of upper and lower limbs are estimated using information from five wearable inertial sensors placed on the body of five test subjects. A set of features related to human limb motions is extracted from the orientation signals (high-level data) and another set from the acceleration raw signals (low-level data) and both are used to build classifiers using four inference algorithms. The proposed features in this work are the number of movements and the average duration of consecutive movements. The classifiers are capable of successfully classifying the set of actions using raw data with up to 77.8% and 93.3% from high-level data. This study allowed comparing the use of two data levels to classify a set of actions performed in daily environments using an inertial sensor network.
Keywords: Action recognition; action classification; feature extraction; indoor environments; joint orientation (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719894532 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:12:p:1550147719894532
DOI: 10.1177/1550147719894532
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().