A data-driven approach for online aggregated load modeling through intelligent terminals
Yi Tang,
Liangliang Zhu,
Jia Ning and
Qi Wang
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 1, 1550147719825996
Abstract:
Load model has significant impact on power system simulation. Current load modeling approaches are inadequate on revealing the accuracy and time-variation of load compositions. The application of wireless sensors dispersed in power distribution networks provides further opportunities for load modeling. In this article, a data-driven online aggregated load modeling approach is proposed systematically. First, all the electricity consumers are clustered according to big data of power consumption behaviors. In each cluster, typical users are designated to stand for the characteristics of the cluster, and intrusive measurement is adapted to capture these typical users’ time-varying information by employing wireless intelligent terminals, which can identify the composition of static load and induction motor load online. Second, the load models of other users in each cluster are assumed identical to typical users, including static impedance–current–power models and induction motor models. Finally, the composite load model is achieved by hierarchical aggregation and bottom-to-up stepwise equivalence. Simulations demonstrate that the load model built by proposed approach reflects higher accuracy and adaptability in power system.
Keywords: Data-driven; intelligent terminal; aggregated load modeling; time-variation; composite load model (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719825996 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:1:p:1550147719825996
DOI: 10.1177/1550147719825996
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().