EconPapers    
Economics at your fingertips  
 

Toward location privacy protection in Spatial crowdsourcing

Hang Ye, Kai Han, Chaoting Xu, Jingxin Xu and Fei Gui

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 3, 1550147719830568

Abstract: Spatial crowdsourcing is an emerging outsourcing platform that allocates spatio-temporal tasks to a set of workers. Then, the worker moves to the specified locations to perform the tasks. However, it usually demands workers to upload their location information to the spatial crowdsourcing server, which unavoidably attracts attention to the privacy-preserving of the workers’ locations. In this article, we propose a novel framework that can protect the location privacy of the workers and the requesters when assigning tasks to workers. Our scheme is based on mathematical transformation to the location while providing privacy protection to workers and requesters. Moreover, to further preserve the relative location between workers, we generate a certain amount of noise to interfere the spatial crowdsourcing server. Experimental results on real-world data sets show the effectiveness and efficiency of our proposed framework.

Keywords: Spatial crowdsourcing; spatio-temporal; privacy-preserving (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719830568 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:3:p:1550147719830568

DOI: 10.1177/1550147719830568

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:3:p:1550147719830568