EconPapers    
Economics at your fingertips  
 

Human activity recognition via smart-belt in wireless body area networks

Yuhong Zhu, Jingchao Yu, Fengye Hu, Zhijun Li and Zhuang Ling

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 5, 1550147719849357

Abstract: Human activity recognition based on wireless body area networks plays an essential role in various applications such as health monitoring, rehabilitation, and physical training. Currently, most of the human activity recognition is based on smartphone, and it provides more possibilities for this task with the rapid proliferation of wearable devices. To obtain satisfactory accuracy and adapt to various scenarios, we built a smart-belt which embedded the VG350 as posture data collector. This article proposes a hierarchical activity recognition structure, which divides the recognition process into two levels. Then a multi-classification Support Vector Machine algorithm optimized by Particle Swarm Optimization is applied to identify five kinds of conventional human postures. And we compare the effectiveness of triaxial accelerometer and gyroscope when used together and separately. Finally, we conduct systematic performance analysis. Experimental results show that our overall classification accuracy is 92.3% and the F-Measure can reach 92.63%, which indicates the human activity recognition system is accurate and effective.

Keywords: Wireless body area networks; human activity recognition; Support Vector Machine; smart-belt; health monitoring (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719849357 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719849357

DOI: 10.1177/1550147719849357

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719849357