EconPapers    
Economics at your fingertips  
 

Improved global stability condition analysis for time-delay fast active queue management scalable transmission control protocol

Jinfeng Huang, Lingjing Zeng and Xiaolong Chen

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 5, 1550147719851933

Abstract: The nonlinear time-delay fast active queue management scalable transmission control protocol model was studied in this article. By analyzing the boundedness properties for solution trajectory of the fast active queue management scalable transmission control protocol model, the iterative relations of fast active queue management scalable transmission control protocol trajectory bounds were obtained. Furthermore, we calculated the maximum growth direction of the delay term in the integral interval and applied the backward method to calculate the lower conservative bound corresponding to each time of the delay term. Therefore, the global stability parameter condition of fast active queue management scalable transmission control protocol, which was less conservative than the existing global stability conditions, was obtained in this article. The validity of the stability conditions obtained in this article was verified by NS-2 simulation experiment.

Keywords: FAST TCP; stability condition; time-varying delay; the iterative relations; trajectory bounds (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719851933 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719851933

DOI: 10.1177/1550147719851933

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:5:p:1550147719851933