EconPapers    
Economics at your fingertips  
 

On the adaptability of ensemble methods for distributed classification systems: A comparative analysis

Mónica Villaverde, David Aledo, David Pérez and Félix Moreno

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 7, 1550147719865505

Abstract: In this work, a two-stage architecture is used to analyze the information collected from several sensors. The first stage makes classifications from partial information of the entire target (i.e. from different points of view or from different kind of measures) using a simple artificial neural network as a classifier. In addition, the second stage aggregates all the estimations given by the ensemble in order to obtain the final classification. Four different ensembles methods are compared in the second stage: artificial neural network, plurality majority, basic weighted majority, and stochastic weighted majority. However, not only reliability is an important factor but also adaptation is critical when the ensemble is working in changing environments. Therefore, the artificial neural network and the plurality majority algorithm are compared against our two proposed adaptive algorithms. Unlike artificial neural network, majority methods do not require previous training. The effects of improving the first stage and how the system behaves when different perturbations are presented have been measured. Results have been obtained from two applications: a realistic one and another simpler one, with more training examples for a more accurate comparison. These results show that artificial neural network is the most accurate proposal, whereas the most innovative proposed stochastic weighted voting is the most adaptive one.

Keywords: Ensemble methods; wireless sensor networks; artificial neural networks; voting algorithms; classifier ensemble (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719865505 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865505

DOI: 10.1177/1550147719865505

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:7:p:1550147719865505