EconPapers    
Economics at your fingertips  
 

Coverage intensity of optimal sensors for common, isolated, and integrated steel structures using novel approach of FEM-MAC-TTFD

Mehdi Firoozbakht, Hamidreza Vosoughifar and Alireza Ghari Ghoran

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 8, 1550147719857568

Abstract: The coverage intensity of sensors is the most important issue on structural health monitoring technique. The geometric configuration of sensors must be optimized based on coverage intensity with proper objectives. In this article, a novel algorithm for optimal sensor placement in various steel frames was evaluated. These frames including moment-resisting frame, moment-resisting frame with base isolation, and moment-resisting frame with base isolation with steel shear wall were selected for case studies. This approach was proposed based on combination of common optimal sensor placement algorithm and nonlinear time history analysis. A new method called transformed time history to frequency domain approach was evaluated to transform nonlinear time history analysis results to frequency domain and then the effective frequencies according the maximum range of Fourier amplitude were selected. The modified type of modal assurance criterion values can be achieved from modal assurance criterion with the exact seismic displacement. All of novel optimal sensor placement processes were done through FEM-MAC-TTFD code modeled and developed in MATLAB by authors of this article. The results show that there is good relative correlation between the sensors number and coverage intensity obtained with modal and modified modal assurance criterion approaches for moment-resisting frame system, but for integrated frame such as moment-resisting frame with base isolation and moment-resisting frame with base isolation with steel shear wall, the modified modal assurance criterion approach is better approach. There is no significant difference between coverage intensity of sensors for top joints between modal assurance criterion and modified modal assurance criterion approaches for moment-resisting frame, moment-resisting frame with base isolation, and moment-resisting frame with base isolation with steel shear wall systems ( R 2 = 0.994, 0.986, and 0.724, respectively). It was found that if reference point is located in center of frame, there is significant difference between modal assurance criterion and modified modal assurance criterion approaches, and modified modal assurance criterion generated slightly better results.

Keywords: Optimal sensor placement; modal assurance criterion; nonlinear time history analysis; transformed time history to frequency domain; coverage intensity (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719857568 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719857568

DOI: 10.1177/1550147719857568

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719857568