Analysis of space labeling through binary fingerprinting
Marouan Mizmizi and
Luca Reggiani
International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 8, 1550147719862215
Abstract:
In the context of fingerprinting applications, this article presents the performance analysis of a type of space labeling based on the binary quantization of the received signal strength indicator. One of the common drawbacks of fingerprinting is the large data size and consequently the large search space and computational load as a result of either vastness of the positioning area or the finer resolution in the fingerprinting grid map. Our approach can be considered, for example, when we use very small, inexpensive beacons, like those based on bluetooth low energy technology, radio frequency identification, or in the future context of the Internet of Things. One of the interesting properties of this deployment is that it can be interpreted as a form of space labeling or encoding since space is divided into cells, and each cell is associated to a binary codeword with the corresponding scalability of the spatial resolution. Here, it developed the performance estimation, exploiting the association of this deployment to an error correcting code. The analysis and numerical and experimental results allow a deeper understanding of the impact of the proposed solution and show that it is robust and computationally efficient with respect to the traditional fingerprinting technique.
Keywords: Wireless sensor networks; positioning; fingerprinting (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719862215 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719862215
DOI: 10.1177/1550147719862215
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().