EconPapers    
Economics at your fingertips  
 

Deep learning in the fog

Andrzej Sobecki, Julian Szymański, David Gil and Higinio Mora

International Journal of Distributed Sensor Networks, 2019, vol. 15, issue 8, 1550147719867072

Abstract: In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high computing capabilities. Processing all the data in the cloud may not be sufficient in cases when we need privacy and low latency, and when we have limited Internet bandwidth, or it is simply too expensive. It poses a challenge for creating a new generation of fog computing that supports artificial intelligence and selects the architecture appropriate for an intelligent solution. In this article, we show from four perspectives, namely, hardware, software libraries, platforms, and current applications, the landscape of components used for developing intelligent Internet of Things solutions located near where the data are generated. This way, we pinpoint the odds and risks of artificial intelligence fog computing and help in the process of selecting suitable architecture and components that will satisfy all requirements defined by the complex Internet of Things systems.

Keywords: Internet of Things; fog computing; edge computing; deep neural networks (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147719867072 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867072

DOI: 10.1177/1550147719867072

Access Statistics for this article

More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:intdis:v:15:y:2019:i:8:p:1550147719867072