Genetic algorithm–optimized support vector machine for real-time activity recognition in health smart home
Yan Hu,
Bingce Wang,
Yuyan Sun,
Jing An and
Zhiliang Wang
International Journal of Distributed Sensor Networks, 2020, vol. 16, issue 11, 1550147720971513
Abstract:
Health smart home, as a typical application of Internet of things, provides a new solution for remote medical treatment. It can effectively relieve pressure from shortage of medical resources caused by aging population and help elderly people live at home more independently and safely. Activity recognition is the core of health smart home. This technology aims to recognize the activity patterns of users from a series of observations on the user’ actions and the environmental conditions, so as to avoid distress situations as much as possible. However, most of the existing researches focus on offline activity recognition, but not good at online real-time activity recognition. Besides, the feature representation techniques used for offline activity recognition are generally not suitable for online scenarios. In this article, the authors propose a real-time online activity recognition approach based on the genetic algorithm–optimized support vector machine classifier. In order to support online real-time activity recognition, a new sliding window-based feature representation technique enhanced by mutual information between sensors is devised. In addition, the genetic algorithm is used to automatically select optimal hyperparameters for the support vector machine model, thereby reducing the recognition inaccuracy caused by manual tuning of hyperparameters. Finally, a series of comprehensive experiments are conducted on freely available data sets to validate the effectiveness of the proposed approach.
Keywords: Health smart home; activity recognition; support vector machines; genetic algorithm; mutual information (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/1550147720971513 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:intdis:v:16:y:2020:i:11:p:1550147720971513
DOI: 10.1177/1550147720971513
Access Statistics for this article
More articles in International Journal of Distributed Sensor Networks
Bibliographic data for series maintained by SAGE Publications ().